Data and Code Management
Exercise 3

1

1.

R Package

Create a package from an RStudio new project with the following function:

“%r% <= function(y, x) {
fit <- 1Im(y ~ %)
coef (fit)

}

. Modify the DESCRIPTION file: Add an author, a license, dependencies, and any

other relevant metadata.

Document the function using roxygen2. Ensure that your Build tools options
are set to use roxygen?2 for documentation.

. Add a snipes dataset (from the class website) to the package. Keep the raw data,

create an .rda file, and document the dataset accordingly.

Construct a vignette for the package to provide an in-depth explanation of its usage.

. Add examples to demonstrate how to use the function in various scenarios.

. Add tests using the testthat package to ensure the function behaves as expected.

Set up automated checks with GitHub Action to continuously test your package.

Create a website for your package using pkgdown and add a GitHub Action to build
and deploy the website automatically.

Object-Oriented Programming

Create a summary function for the class pixel. Verify the method dispatch mech-
anism both before and after implementing the summary function.

Compare and describe the difference between t.test () and t.data.frame(). What
would happen if you run the following code, and why?

x <- structure(1:10, class = "test")
t (%)

Read the documentation for UseMethod () and explain why the following code re-
turns the results that it does.

g <- function(x) {
x <- 10
y <- 10
UseMethod("g")

}

g.default <- function(x) c(x = x, y = y)

Page 1 of 2



Data and Code Management
Exercise 3

x <-1
y <-1
g(y)

4. What do you expect this code to return? What does it actually return, and why?

generic2 <- function(x) UseMethod('"generic2")
generic2.al <- function(x) "al"
generic2.a2 <- function(x) "a2"
generic2.b <- function(x) {
class(x) <- "al"
NextMethod ()

}

generic2(structure(list(), class = c("b", "a2")))

3 Functional Programming

Suppose you work for a retail company, and you have a list of products with their daily
sales recorded for each day of the month. The data is represented as follows:

product_sales <- list(
productl = c(50, 45, 60, 55, 70, 80, 75, 90, 85, 60, 70, 65, 70, 75, 80,
85, 90, 95, 85, 70, 75, 80, 60, 45, 55, 50, 45, 60, 65),

product2 = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,
165, 170, 175),

product3 = c(20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

50, 52, b4, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78)

1. Using a for loop, calculate the total monthly sales for each product.
2. Repeat 1 using map.

3. Repeat 1 using lapply.

4. Repeat 1 using sapply.

5. Repeat 1 using vapply.

6. Repeat 1 using mclapply or parLapply.

7. Compare these six approaches with microbenchmark. Which approach is the most
efficient?

Page 2 of 2



	R Package
	Object-Oriented Programming
	Functional Programming

