
Data and Code Management
Exercise 3

1 R Package

1. Create a package from an RStudio new project with the following function:

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

2. Modify the DESCRIPTION file: Add an author, a license, dependencies, and any
other relevant metadata.

3. Document the function using roxygen2. Ensure that your Build tools options
are set to use roxygen2 for documentation.

4. Add a snipes dataset (from the class website) to the package. Keep the raw data,
create an .rda file, and document the dataset accordingly.

5. Construct a vignette for the package to provide an in-depth explanation of its usage.

6. Add examples to demonstrate how to use the function in various scenarios.

7. Add tests using the testthat package to ensure the function behaves as expected.

8. Set up automated checks with GitHub Action to continuously test your package.

9. Create a website for your package using pkgdown and add a GitHub Action to build
and deploy the website automatically.

2 Object-Oriented Programming

1. Create a summary function for the class pixel. Verify the method dispatch mech-
anism both before and after implementing the summary function.

2. Compare and describe the difference between t.test() and t.data.frame(). What
would happen if you run the following code, and why?

x <- structure(1:10, class = "test")

t(x)

3. Read the documentation for UseMethod() and explain why the following code re-
turns the results that it does.

g <- function(x) {
x <- 10

y <- 10

UseMethod("g")

}
g.default <- function(x) c(x = x, y = y)

Page 1 of 2



Data and Code Management
Exercise 3

x <- 1

y <- 1

g(y)

4. What do you expect this code to return? What does it actually return, and why?

generic2 <- function(x) UseMethod("generic2")

generic2.a1 <- function(x) "a1"

generic2.a2 <- function(x) "a2"

generic2.b <- function(x) {
class(x) <- "a1"

NextMethod()

}

generic2(structure(list(), class = c("b", "a2")))

3 Functional Programming

Suppose you work for a retail company, and you have a list of products with their daily
sales recorded for each day of the month. The data is represented as follows:

product_sales <- list(

product1 = c(50, 45, 60, 55, 70, 80, 75, 90, 85, 60, 70, 65, 70, 75, 80,

85, 90, 95, 85, 70, 75, 80, 60, 45, 55, 50, 45, 60, 65),

product2 = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,

105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,

165, 170, 175),

product3 = c(20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78)

)

1. Using a for loop, calculate the total monthly sales for each product.

2. Repeat 1 using map.

3. Repeat 1 using lapply.

4. Repeat 1 using sapply.

5. Repeat 1 using vapply.

6. Repeat 1 using mclapply or parLapply.

7. Compare these six approaches with microbenchmark. Which approach is the most
efficient?

Page 2 of 2


	R Package
	Object-Oriented Programming
	Functional Programming

