Data and Code Management
Exercise 3 13 November 2025

1

R Package (extended version with making classes
and methods)

Check AdditionalExercisePackage repository on GitHub Resulting package.
Below we provide a detailed explanation of how to create and develop an R package.
To begin, prepare the initial structure of the package.

Problem 1.

1.

One should create a project: New project/New directory /R package (it is rec-
ommended to click ”create a git repository” to later publish the package on github)
or using a command create_package("path/to/package_name”) on a console.

Create a remote repository on github and connect it to your package. Alternatively,
one make a new repository using commands

usethis::use_git() # makes a repository locally
usethis::use_github() # creates a remote repository
and connects it with your package

. Using the function usethis::use_readme_md() (recommended) or manually you

should create a README file in your github repository. Commit changes.

. Install packages devtools, usethis, knitr, pkgdown, roxygen2 and testthat,

which are used a lot while developing a package.

. To efficiently develop a package you should interact a lot with the console to write

various commands

. There is no need to store default ”hello.R”, "hello.Rd” and "NAMESPACE” files,

they can be removed (the new files appear during development of the package).

To create a function in the package:

1.

Use a command usethis: :use_r("your_function_name”), which makes an empty
file ”your_function_name.R” in the folder "R”. Alternatively, you can make it man-
ually.

. Add body of a function:

“%r%T <= function(y, x){
fit <= Im(y ~ x)
coef (fit)

b

. To correctly document your function we should use Roxygen Skeleton for our func-

tion: to this end, go here: Code/Insert Roxygen Skeleton. Please note that your
cursor should be on the same string as the beginning of your function (not before,
otherwise error might appear). The obtained file should like

Data and Code Management

Exercise 3 13 November 2025
#' Title
s
#' @param y
#' @param x
4
#' @return
#
#' @examples
#' @export

“%r%T <- function(y, x) {
fit <= Im(y ~ x)
coef(fit)

}

4. Edit necessary fields: replace "Title” with @title and write the appropriate title,
fill in information about parameters, return result. @export means that the function
will be available for users. Make examples with @example or @examples to illustrate
for users how the function works (see Problem 6 for more details). Optionally one
can add section @description to describe the function.

5. Since functions 1m and coef belong to a built-in library stats we should mention
that we use this functions in @importFrom (or @import to import whole packages).
This section is not generated automatically.

6. The file should have the following view:

#' Fitted linear model

#' @description This function calculates the regression coefficients of a linear moc
#

#' @param y Corresponds to the output vector (which we try to predict).
#' @param x Corresponds to the input vector.

#
#' @return Coefficients of the fitted linear model.
4

#' @examples 2:1 %r% 3:2

'

#' @importFrom stats 1lm coef

y

#' @export

“%r%T <= function(y, x) {
fit <= Im(y ~ x)
coef(fit)

}

Once you have made the function save it and then document using devtools: : document ()
(see Problem 3) and commit changes. Next we create a class with its methods and
properly document them.

Data and Code Management
Exercise 3 13 November 2025

Problem 1* (bonus for homework 3).

1. Let us create a class Person_class that stores person information about a person
(name and age). To document our class properly we create a function in R that
stores the constructor function Person_class.

#' Person_class object

#

#' @param name Name of a Person
#' @param age Age of a Person

#
#' @return An object of class “Person_class”
#
#' @examples Person_class(name = "Alice"”, age = 30)
#
#' @export
Person_class <- function(name, age) {
structure(list(name = name, age = age), class = "Person_class")
}

2. Next we create a method print_info that prints information about a person (object
of the class Person_class). Since there is no yet made method print_info we first
create a generic function print_info using UseMethod function (not mandatory,
but recommended in case you later want to use the method for different classes).
Do not forget to document all arguments (including ”...”)!

#' Generic function print_info

#

#' @param object An object

#' @param ... Some additional parameters (ignored)

#

#' @return Method depends on class

#' @export

print_info <- function(object, ...) {
UseMethod("print_info")

}

Warning: If there already exists a function like print or plot there is no need to
make the generic function (since it already exists!). Save it and document it using
devtoools: :document (). Commit changes.

3. Finally, we make the actual method for our class (see the resulting function):

#' Print method for a class Person_class

4

#' @param object an object to which we apply our method
#' @param ... Additional parameters (ignored)

Data and Code Management

Exercise 3 13 November 2025
4
#' @return Prints information about the person
#
#' @examples Person_class(name = "Alice", age = 30)
4
#' @export
#' @method print_info Person_class
print_info.Person_class <- function(object, ...) {
cat("Person:\n")
cat(” Name:", object$name, "\n")
cat(” Age :", object$age, "\n")

Check the created functions using devtools: : check(document = FALSE) (optional,
but it good to do from time to time to control your package).

Save it, document and commit changes.

If you want to store the class + methods in the same place you can put all your
code parts together (not mandatory to do).

Problem 2.

The DESCRIPTION file contains the metadata of a package (such as the author of the pack-
age, license, dependencies, etc.). It allows R to understand the package’s dependencies
and provides necessary metadata for users.

To choose a license use the following command: usethis::use_mit_license. The file
should like

Package: AdditionalExercisePackage

Type: Package

Title: Package to showcase package building in R to students
Version: 0.1.0

Author: Timofei Shashkov

Maintainer: <timofei.shashkov@unil.ch>

Description: We illustrate the process of making a package in R
License: MIT + file LICENSE

Encoding: UTF-8

LazyData: true

URL: https://github.com/DaCM2025/AdditionalExercisePackage
BugReports: https://github.com/DaCM2025/AdditionalExercisePackage/issues
RoxygenNote: 7.3.2

Save it and commit changes (you may also check to control that everything is created
properly).

Problem 3.

(Solution was already covered in Problem 1).

Data and Code Management
Exercise 3 13 November 2025

To provide users with information about a package’s functions and datasets, each
package should include .Rd files, which are stored in the "man” folder. You should not
edit thess files yourself!

To generate documentation for functions and datasets, you should use the command
devtools: :document(). This command automatically creates the necessary documenta-
tion files for the package and updates the NAMESPACE file (do not modify this file yourself!)
which manages which functions and objects are exported (made accessible to users) and
which functions are imported from other packages.

To access the documentation for a created function your_function, use the command
?your_function.

Problem 4.

To add a dataset, we first need to upload the raw dataset. This can be done using the
following procedure:

1. Use the command usethis::use_data_raw() to create a folder called data-raw with
an R script file named DATASET.R. Alternatively, you can create the folder and R
script manually (although this is not recommended).

2. Upload the dataset snipes.csv (which you can find here https://ptds.samorso.ch /exercises/)
to the data-raw folder.

3. Modify DATASET.R: Load the dataset using the command read.csv and then save
it to the data folder as an .rda file, so it will be easily accessible for users after
loading the package. Run the code in DATASET.R to save the dataset.

4. The resulting DATASET.R file should look like this:

code to prepare snipes.csv dataset
snipes <- read.csv(file = "data-raw/snipes.csv")
usethis: :use_data(snipes, overwrite = TRUE)

5. Add documentation for the dataset. To do this, create an R script file in the R
folder with the following content:

#' Snipes price data

#

#' @format ## snipes

#' A data frame with 48 rows and 3 columns:
#' \describe{

#' \item{discount}{Discounted price of sneakers}
#' \item{brand}{Brand of sneakers}

#! \item{price}{Original price of sneakers}

#' 3

#' @source <https://www.snipes.ch/>
"snipes”

Data and Code Management
Exercise 3 13 November 2025

6. Save it, document using devtools: :document() and commit changes.

Using the function usethis: :use_build_ignore we can put all irrelevant for our pack-
age files to .RBuildignore file (package will not see them, similarly as with .gitignore).

\texttt{usethis: :use_build_ignore(c(”".*\\.Rproj$"”, "“\\.Rproj\\.user$",
""LICENSE\\.md$", ""\\.github$", "“data-raw$"))?}

Problem 5.

Another important component of each package is a vignette, which is an RMarkdown file
used to provide a detailed guide on how to use the package. To create a vignette with
the name "my-vignette”, use the command usethis::use_vignette("my-vignette").
Modify the file to explain to users how to work with your package.

In order to run the rmarkdown file you should use the command devtools::install()
to install the package on your computer (since it uses your library).

Once you finished with its modification, commit changes.

Problem 6.

There are two different ways to provide examples in the documentation of functions.
The first method is to include example calculations directly in the R script file for the
functions (good for short examples). This is done using the @examples tag in the roxygen2
comments, as shown in the example below:

#' Fitted linear model

#' @description This function calculates the regression coefficients of
#' a linear model.

#

#' @param y Corresponds to the output vector (which we try to predict).
#' @param x Corresponds to the input vector.

4
#' @return Coefficients of the fitted linear model.
#

#' @examples 2:1 %r% 3:2

#

#' @importFrom stats 1m coef

#

#' @export

“%r% <= function(y, x) {
fit <- Im(y ~ x)
coef(fit)

}

Alternatively, for complex examples, you can create them as R scripts in the directory
inst/examples/.

To start, create the nested folders and an R script either manually or by using the
command usethis: :use_directory("inst/examples”).

In the R script (e.g., inst/examples/my_example.R), you can write examples as before,
which will be available for users to run. These examples demonstrate how to use your
functions in different scenarios.

Data and Code Management
Exercise 3 13 November 2025

linear regression
cars$speed %r% cars$dist

To document such examples, you should reference the file path inst/examples/my_example.R
next to the @example tag (note: use @example for file-based examples, not @examples as
used for inline examples).

#' Fitted linear model

#' @description This function calculates the regression coefficients

#' of a linear model.

#

#' @param y Corresponds to the output vector (which we try to predict).
#' @param x Corresponds to the input vector.

#
#' @return Coefficients of the fitted linear model.
#

#' @examples 2:1 %r% 3:2

#

#' Q@example inst/examples/eg_reg_coef.R

#

#' @importFrom stats 1lm coef

#

#' Q@export

“%r% <= function(y, x) {
fit <= Im(y ~ x)
coef(fit)

}

See more examples in Resulting package.

Before publishing a package, it is important to verify that it works correctly. First, we
should check the package to ensure it meets R package standards and can be distributed
without issues (as we did in Problem 1). This process covers a broad range of aspects,
including documentation, dependencies, examples, and compliance with CRAN policies.

To ensure that functions work correctly, we should also add tests. These tests help
confirm that the package functions as expected and can handle a variety of inputs and
use cases.

Problem 7.

Before testing functions, we need to create test files, which will be located in tests/testthat/.
By running the command usethis: :use_testthat(), we create the directory tests/testthat
along with a file testthat.R inside the tests folder. This file will manage the tests for
the functions in the package.

Tests are written as R scripts located in the testthat folder. Common functions for
testing include:

e expect_error: checks that an error is thrown for specific inputs.
e expect_type: verifies that the output type matches the expected type.

e test_that: organizes the tests for a function or feature.

Data and Code Management
Exercise 3 13 November 2025

Here is an example of a test file:

test_that("regression coefficient input check”,{
expect_error(cars$speed %r% cars)

)

test_that("regression coefficient output”,{
expect_type(cars$speed %r% cars$dist, "double™)

D)

For more examples of tests see Resulting package (tests folder). To actually test the
functions, run the command devtools: :test(). Once finished, commit your changes,

Problem 8.

To enable automated checking, use usethis: :use_github_action_check_standard(). This
command creates a . github folder that contains a workflows folder with an R-CMD-check. yaml
file.

This YAML file configures GitHub Actions to automatically check the package on
various operating systems and R versions each time updates are pushed to the remote
repository. If any errors appear, GitHub will notify you.

Commit your changes and check our package.

Problem 9.

To create a professional website for your package, you can follow these steps:

1. Run the command usethis: :use_pkgdown() to create the file _pkgdown.yml, which
configures the website for your package.

2. To link the website with the remote GitHub repository, add the repository URL
in _pkgdown.yml and include the same link in the DESCRIPTION file (if not included
yet, see the field URL: <link>). Don’t forget to save these changes.

3. Use pkgdown: :build_site() to build the website locally.

4. To set up automatic website updates via GitHub Actions, run the command

usethis::use_github_action("pkgdown™).
5. Push the changes to your remote GitHub repository.

6. Once all tests are passed corretly you there will appear the second branch gh-pages
(you should keep it together with your main branch) and you can make your website
visible in github. To this end, make sure that your package is public (otherwise
change it in general settings). Then go to Settings/Code and automation/Pages
and choose as branch to store your website gh-pages and do not forget to save
changes.

7. Once you have done that, go to Code/Deployments/github-pages and there you
will see a link got your website.

Data and Code Management
Exercise 3 13 November 2025

Lecture 4: Object Oriented Programming

Problem 1: Create a summary function for the class pixel

In R, method dispatch for S3 objects works by calling the method that matches the class
of the object. First, we define a simple class pixel, then we create a custom summary
method for this class.

Define class 'pixel'
pixel <- function(x, y, color) {
structure(list(x = x, y =y, color = color), class = "pixel")

3

Define default summary method
summary.default <- function(object) {
print(”"No summary available for this object."”)

}

Before implementing summary for 'pixel'
p <- pixel(10, 15, "red")
summary(p) # Will call the default summary

Define summary method for 'pixel'
summary.pixel <- function(object) {
cat("Pixel Information: \n")

cat("X position: ", object$x, "\n")

cat("Y position: ", object$y, "\n")

cat("Color: ", object$color, "\n")
3

After implementing summary for 'pixel’
summary(p) # Will call the pixel summary method

Problem 2: Difference between t.test() and t.data.frame()

The function t.test() performs a Student’s t-test for statistical inference, while t() is
a generic method that computes the transpose of a matrix or data frame. If you create
an object with a custom class, and the class does not have a specific t() method, R will
fall back to the default method.

Running the code below demonstrates the error due to the absence of a t. test method
for the custom class:

X <- structure(1:10, class = "test")

t()

Since t() is looking for a method matching the class test, but no such method exists,
it returns an error.

Data and Code Management
Exercise 3 13 November 2025

Problem 3: Understanding UseMethod()

In this example, UseMethod() is used to dispatch based on the class of the argument.
The function g() does not modify the class of its arguments, so the default method
g.default() is called. However, there is a subtle scoping issue in this code where the
variable y is not available in the scope of g.default()

g <- function(x) {

x <- 10
y <- 10
UseMethod("g")

}
g.default <- function(x) c(x = x, y = y)

X <-1
y <=1
g(y) # Will throw an error because 'y' is not found in g.default's scope

To fix this, y must be passed as an argument or explicitly declared in the parent
environment.

Problem 4: Understanding NextMethod()

In this example, the class of the object is changed within the function generic2.b, and
NextMethod() is used to invoke the next method in the inheritance hierarchy:.

generic2 <- function(x) UseMethod("generic2")

generic2.al <- function(x) "al”
generic2.a2 <- function(x) "a2"

generic2.b <- function(x) {
class(x) <- "al1"
NextMethod ()

}

generic2(structure(list(), class = c("b", "a2")))

When generic2.b() is called, it modifies the class of x to "a1" and calls NextMethod ().
Even though the class of x was modified, the function NextMethod() will dispatch to
generic2.a2(), since the next element in the initial class list was a2.The final result will
be "a2".

Lecture 4: Functional Programming

Problem 1: Using a for loop, calculate the total monthly sales
for each product.

1. For loop approach

Data and Code Management
Exercise 3 13 November 2025

product_sales <- list(
productl = c(50, 45, 60, 55, 70, 80, 75, 90, 85, 60, 70, 65, 70, 75, 80,
85, 90, 95, 85, 70, 75, 80, 60, 45, 55, 50, 45, 60, 65),

product2 = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,
165, 170, 175),

product3 = c(20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78)

)

Initialize an empty vector to store results

f_for = function(x){total_sales <- c()

Loop through each product in the product_sales list
for (product in names(x)) {

Calculate the total sales for the current product
total_sales[product] <- sum(x[[product]])

3

total_sales

3

Display the total monthly sales for each product
f_for(product_sales)

Problem 2: Repeat 1 using map.

Load purrr package
library(purrr)

Use map to calculate total monthly sales for each product
f_map = function(x){

map(x, sum)
3
Display the total monthly sales for each product
f_map(product_sales)

As a result, we obtain a list of three lists. If we want to specify the class of the output,
we can use functions such as map_dbl, map_int, map_lgl, map_chr, etc.

Problem 3: Repeat 1 using lapply.

Use lapply to calculate total monthly sales for each product
f_lapply = function(x){

lapply(x, sum)
}

Display the total monthly sales for each product
f_lapply(product_sales)

We observe the same result. Compared to map, the function lapply is part of base R
and always returns a list.

Data and Code Management
Exercise 3 13 November 2025

Problem 4: Repeat 1 using sapply.

Use sapply to calculate total monthly sales for each product
f_sapply = function(x){

sapply(x, sum)
}

Display the total monthly sales for each product
f_sapply(product_sales)

As a result, we have a numeric vector.

Problem 5: Repeat 1 using vapply.
#5. Vapply
Use vapply to calculate total monthly sales for each product
f_vapply = function(x){

vapply(x, FUN = sum, FUN.VALUE = numeric(1))
}

Display the total monthly sales for each product
f_vapply(product_sales)

The function vapply produces the same result as sapply, but with stricter control
over outputs. Unlike sapply, which tends to simplify outputs automatically, vapply
consistently returns the output type specified in FUN.VALUE

Problem 6: Repeat 1 using mclapply or parLapply.

#6. Mclapply and parlLapply

We install a library "parallel” for parallel calculus
library(parallel)
One way to implement parallelism is to use mclapply (does not supported by Windows!)
mclapply(product_sales, sum, mc.cores = 5)

Alternatively, one can use parlLapply

To this end, we create 5 clusters

cl <- makeCluster(5)

f_par = function(x){

and we are able to apply our function

parLapply(cl, x, sum)

We should stop clusters

b

Data and Code Management
Exercise 3 13 November 2025

Display the total monthly sales for each product
f_par(product_sales)

stopCluster(cl)

The advantages of the mclapply function:

1. It provides a quick and simple parallel solution without inter-process communica-
tion.

2. It is well-suited for tasks that can be completed independently on a single machine.

However, mclapply is not supported on Windows (i.e., it is not portable) and does not
allow communication between parallel processes.

On the other hand, the function parLapply is supported on both Windows and Unix-
like systems, and it provides the user with more control over the processes (including
parallel computation across multiple computers). To use parLapply, however, one needs
to create clusters and manage the processes accordingly.

Problem 7: Compare these six approaches with microbenchmark.
Which approach is the most efficient?

To be able to treat parLapply as a function we move ”stopCluster(cl)” in the end of the
code.

To this end, we create 5 clusters

cl <- makeCluster(5)

f_par = function(x){
and we are able to apply our function
parLapply(cl, x, sum)
We should stop clusters

3

Display the total monthly sales for each product

f_par(product_sales)

7. Benchmark

library(microbenchmark)

Testing performance of the aforementioned functions

microbenchmark (f_for(product_sales), f_map(product_sales),
f_lapply(product_sales), f_sapply(product_sales), f_vapply(product_sales),

f_par(product_sales), times = 1000)

stopCluster(cl)

Data and Code Management
Exercise 3 13 November 2025

The table with results should look as follows:

Unit: microseconds

expr min 1q mean median uq max neval cld
f_for(product_sales) 3.5 5.4 7.5209 7.60 8.70 34.2 1000 a
f_map(product_sales) 114.4 138.2 166.6000 159.75 177.60 1193.2 1000 b
f_Tapply(product_sales) 2.9 3.8 5.8297 4,50 5.30 971.8 1000 a
f_sapply(product_sales) 13.4 17.6 24.9964 23.30 26.00 1770.9 1000 a
f_vapply(product_sales) 3.6 4.9 7.6922 6.20 7.40 1260.2 1000 a

f_par(product_sales) 524.9 608.5 794.8039 689.35 850.45 8159.1 1000 <

According to the table, we can conclude that lapply and for loop implementation
work faster than other functions. The function parlapply is the slowest one in this
example, which might be a case for simple tasks, since parlapply requires time to manage
several processes and, therefore, be inefficient in simple problems.

