
Data and Code Management
Exercise 3 - correction

1 R Package

Check pkgtest repository on GitHub https://github.com/ptds2024/pkgtest.
Below we provide a detailed explanation of how to create and develop an R package.

To begin, prepare the initial structure of the package.

Problem 1.

1. One should create a project: New project/New directory/R package (it is recom-
mended to click ”create a git repository” to later publish the package on github) or
using a command create package("path/to/package name") on a console.

2. Create a remote repository on github and connect it to your package.

3. Install packages devtools, usethis, knitr, pkgdown, roxygen2 and testthat,
which are used a lot while developing a package.

4. To efficiently develop a package you should interact a lot with the console to write
various commands.

5. There is no need to store default ”hello.R”, ”hello.Rd” and ”NAMESPACE” files,
they can be removed (the new files appear during development of the package).

To create a function in the package:

1. Use a command usethis::use r("your function name"), which makes an empty
file ”your function name.R” in the folder ”R”.

2. Add body of a function:

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

3. Create a documentation block for the function. To this end, go here: Code/Insert
Roxygen Skeleton. Please note that your cursor should be on the same string as
the beginning of your function (not before, otherwise error might appear). The
obtained file should like

#' Title

#'

#' @param y

#' @param x

#'

#' @return

#' @export

#'

#' @examples

`%r%` <- function(y, x) {

Page 1 of 13

https://github.com/ptds2024/pkgtest

Data and Code Management
Exercise 3 - correction

fit <- lm(y ~ x)

coef(fit)

}

4. Edit necessary fields: replace ”Title” with @title and write the appropriate title,
fill in information about parameters, return result. @export means that the function
will be available for users. Make examples with @example or @examples to illustrate
for users how the function works (see Problem 6 for more details). Optionally one
can add section @description to describe the function.

5. Since functions lm and coef belong to a built-in library stats we should mention
that we use this functions in @importFrom (or @import to import whole packages).
This section is not generated automatically.

6. The file should have the following view:

#' @title Function to calculate the regression coefficients

#' @description This function calculates

#' the regression coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @example /inst/examples/eg_reg_coef.R

#' @importFrom stats lm coef

#' @export

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

7. Note that to create several functions in one package, one should create several sepa-
rate files for each function (using the command usethis::use r("your function name")).

Problem 2.

The DESCRIPTION file contains the metadata of a package (such as the author of the pack-
age, license, dependencies, etc.). It allows R to understand the package’s dependencies
and provides necessary metadata for users.

To choose a license use the following command: usethis::use mit license. The
file should like

Package: pkgtest

Type: Package

Title: Package to showcase package building in R to students

Version: 0.1.0

Authors@R: c(person("Samuel", "Orso", email = "samuel.orso@unil.ch",

role = c("aut", "cre")),

Page 2 of 13

Data and Code Management
Exercise 3 - correction

person("Timofei", "Shashkov",

email = "timofei.shashkov@unil.ch", role = "aut"))

Maintainer: <samuel.orso@unil.ch>

Description: More about what it does (maybe more than one line)

Use four spaces when indenting paragraphs within the Description.

License: MIT + file LICENSE

Suggests:

testthat (>= 3.0.0),

knitr,

rmarkdown

Depends: R (>= 4.0.0)

Encoding: UTF-8

LazyData: true

RoxygenNote: 7.3.1

Config/testthat/edition: 3

Problem 3.

To provide users with information about a package’s functions and datasets, each package
should include .Rd files, which are stored in the "man" folder.

To generate documentation for functions and datasets, you can use the command
devtools::document(). This command automatically creates the necessary documenta-
tion files for the package and updates the NAMESPACE file, which manages which functions
and objects are exported (made accessible to users) and which functions are imported
from other packages.

To access the documentation for a created function your function, use the command
?your function.

Problem 4.

To add a dataset, we first need to upload the raw dataset. This can be done using the
following procedure:

1. Use the command usethis::use data raw() to create a folder called data-raw

with an R script file named DATASET.R. Alternatively, you can create the folder and
R script manually (although this is not recommended).

2. Upload the dataset snipes.csv (which you can find here https://ptds.samorso.ch/exercises/)
to the data-raw folder.

3. Modify DATASET.R: Load the dataset using the command read.csv and then save
it to the data folder as an .rda file, so it will be easily accessible for users after
loading the package. Run the code in DATASET.R to save the dataset.

4. The resulting DATASET.R file should look like this:

code to prepare snipes.csv dataset

snipes <- read.csv(file = "data-raw/snipes.csv")

usethis::use_data(snipes, overwrite = TRUE)

Page 3 of 13

https://ptds.samorso.ch/exercises/

Data and Code Management
Exercise 3 - correction

5. Add documentation for the dataset. To do this, create an R script file in the R

folder with the following content:

#' Snipes price data

#'

#' @format ## snipes

#' A data frame with 48 rows and 3 columns:

#' \describe{
#' \item{discount}{Discounted price of sneakers}
#' \item{brand}{Brand of sneakers}
#' \item{price}{Original price of sneakers}
#' }
#' @source <https://www.snipes.ch/>

"snipes"

6. To update the documentation, use the command devtools::document().

Problem 5.

Another important component of each package is a vignette, which is an RMarkdown file
used to provide a detailed guide on how to use the package. To create a vignette with
the name "my-vignette", use the command usethis::use vignette("my-vignette").
Modify the file to explain to users how to work with your package.

In order to run the rmarkdown file you should use the command devtools::install()
to install the package on your computer.

Problem 6.

There are two different ways to provide examples in the documentation of functions.
The first method is to include example calculations directly in the R script file for the
functions. This is done using the @examples tag in the roxygen2 comments, as shown in
the example below:

#' @title Function to calculate the regression coefficients

#' @description This function calculates the regression

coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @examples cars$speed%r%cars$distance
#' @importFrom stats lm coef

#' @export

`%r%` <- function(y, x) {

fit <- lm(y ~ x)

coef(fit)

}

Alternatively, for complex examples, you can create them as R scripts in the directory
inst/examples/.

Page 4 of 13

Data and Code Management
Exercise 3 - correction

To start, create the nested folders and an R script either manually or by using the
command usethis::use directory("inst/examples").

In the R script (e.g., inst/examples/my example.R), you can write examples as be-
fore, which will be available for users to run. These examples demonstrate how to use
your functions in different scenarios.

linear regression

cars$speed %r% cars$dist

To document such examples, you should reference the file path inst/examples/my example.R

next to the @example tag (note: use @example for file-based examples, not @examples as
used for inline examples).

#' @title Function to calculate the regression coefficients

#' @description This function calculates

#' the regression coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @example /inst/examples/eg_reg_coef.R

#' @importFrom stats lm coef

#' @export

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

Before publishing a package, it is important to verify that it works correctly. First, we
should check the package to ensure it meets R package standards and can be distributed
without issues. This process covers a broad range of aspects, including documentation,
dependencies, examples, and compliance with CRAN policies.

To ensure that functions work correctly, we should also add tests. These tests help
confirm that the package functions as expected and can handle a variety of inputs and
use cases.

Problem 7.

Before testing functions, we need to create test files, which will be located in tests/testthat/.
By running the command usethis::use testthat(), we create the directory tests/testthat
along with a file testthat.R inside the tests folder. This file will manage the tests for
the functions in the package.

Tests are written as R scripts located in the testthat folder. Common functions for
testing include:

• expect error: checks that an error is thrown for specific inputs.

• expect type: verifies that the output type matches the expected type.

• test that: organizes the tests for a function or feature.

Here is an example of a test file:

Page 5 of 13

Data and Code Management
Exercise 3 - correction

test_that("regression coefficient input check",{
expect_error(cars$speed %r% cars)

})
test_that("regression coefficient output",{
expect_type(cars$speed %r% cars$dist, "double")

})

To actually test the functions, run the command devtools::test().

Problem 8.

To enable automated checking, use usethis::use github action check standard().
This command creates a .github folder that contains a workflows folder with an R-CMD-check.yaml
file.

This YAML file configures GitHub Actions to automatically check the package on
various operating systems and R versions each time updates are pushed to the remote
repository. If any errors appear, GitHub will notify you.

Problem 9.

To create a professional website for your package, you can follow these steps:

1. Run the command usethis::use pkgdown() to create the file pkgdown.yml, which
configures the website for your package.

2. Use pkgdown::build site() to build the website locally.

3. To link the website with the remote GitHub repository, add the repository URL
in pkgdown.yml and include the same link in the DESCRIPTION file (e.g., URL:
<link>). Don’t forget to save these changes.

4. To set up automatic website updates via GitHub Actions, run the command

usethis::use github action("pkgdown").

5. Push the changes to your remote GitHub repository.

2 Object-Oriented Programming

Problem 1: Create a summary function for the class pixel

In R, method dispatch for S3 objects works by calling the method that matches the class
of the object. First, we define a simple class pixel, then we create a custom summary

method for this class.

Define class 'pixel'

pixel <- function(x, y, color) {
structure(list(x = x, y = y, color = color), class = "pixel")

}

Page 6 of 13

Data and Code Management
Exercise 3 - correction

Define default summary method

summary.default <- function(object) {
print("No summary available for this object.")

}

Before implementing summary for 'pixel'

p <- pixel(10, 15, "red")

summary(p) # Will call the default summary

[1] "No summary available for this object."

Define summary method for 'pixel'

summary.pixel <- function(object) {
cat("Pixel Information: \n")
cat("X position: ", object$x, "\n")
cat("Y position: ", object$y, "\n")
cat("Color: ", object$color, "\n")

}

After implementing summary for 'pixel'

summary(p) # Will call the pixel summary method

Pixel Information:

X position: 10

Y position: 15

Color: red

Problem 2: Difference between t.test() and t.data.frame()

The function t.test() performs a Student’s t-test for statistical inference, while t() is
a generic method that computes the transpose of a matrix or data frame. If you create
an object with a custom class, and the class does not have a specific t() method, R will
fall back to the default method.

Running the code below demonstrates the error due to the absence of a t.testmethod
for the custom class:

x <- structure(1:10, class = "test")

t(x)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

attr(,"class")

[1] "test"

Since t() is looking for a method matching the class test, but no such method exists,
it returns an error.

Page 7 of 13

Data and Code Management
Exercise 3 - correction

Problem 3: Understanding UseMethod()

In this example, UseMethod() is used to dispatch based on the class of the argument.
The function g() does not modify the class of its arguments, so the default method
g.default() is called. However, there is a subtle scoping issue in this code where the
variable y is not available in the scope of g.default().

g <- function(x) {
x <- 10

y <- 10

UseMethod("g")

}

g.default <- function(x) c(x = x, y = y)

x <- 1

y <- 1

g(y) # Will throw an error because 'y' is not found in g.default's scope

x y

1 10

To fix this, y must be passed as an argument or explicitly declared in the parent
environment.

Problem 4: Understanding NextMethod()

In this example, the class of the object is changed within the function generic2.b, and
NextMethod() is used to invoke the next method in the inheritance hierarchy.

generic2 <- function(x) UseMethod("generic2")

generic2.a1 <- function(x) "a1"

generic2.a2 <- function(x) "a2"

generic2.b <- function(x) {
class(x) <- "a1"

NextMethod()

}

generic2(structure(list(), class = c("b", "a2")))

[1] "a2"

When generic2.b() is called, it modifies the class of x to "a1" and calls NextMethod().
Even though the class of x was modified, the function NextMethod() will dispatch to
generic2.a2(), since the next element in the initial class list was a2.The final result will
be "a2".

Page 8 of 13

Data and Code Management
Exercise 3 - correction

3 Functional Programming

Problem 1: Using a for loop, calculate the total monthly sales
for each product.

1. For loop approach

product_sales <- list(

product1 = c(50, 45, 60, 55, 70, 80, 75, 90, 85, 60, 70, 65, 70, 75, 80,

85, 90, 95, 85, 70, 75, 80, 60, 45, 55, 50, 45, 60, 65),

product2 = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,

105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,

165, 170, 175),

product3 = c(20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78)

)

Initialize an empty vector to store results

f_for = function(x){total_sales <- c()

Loop through each product in the product_sales list

for (product in names(x)) {
Calculate the total sales for the current product

total_sales[product] <- sum(x[[product]])

}
total_sales

}
Display the total monthly sales for each product

f_for(product_sales)

product1 product2 product3

1990 3075 1470

Problem 2: Repeat 1 using map.

Load purrr package

library(purrr)

Warning: package ’purrr’ was built under R version 4.5.1

Error: package or namespace load failed for ’purrr’ in dyn.load(file, DLLpath

= DLLpath, ...):

unable to load shared object ’/usr/local/lib/R/site-library/rlang/libs/rlang.so’:

/usr/local/lib/R/site-library/rlang/libs/rlang.so: undefined symbol:

Rf charIsUTF8

Use map to calculate total monthly sales for each product

f_map = function(x){

Page 9 of 13

Data and Code Management
Exercise 3 - correction

map(x, sum)

}
Display the total monthly sales for each product

f_map(product_sales)

Error in map(x, sum): could not find function "map"

As a result, we obtain a list of three lists. If we want to specify the class of the output,
we can use functions such as map dbl, map int, map lgl, map chr, etc.

Problem 3: Repeat 1 using lapply.

Use lapply to calculate total monthly sales for each product

f_lapply = function(x){
lapply(x, sum)

}

Display the total monthly sales for each product

f_lapply(product_sales)

$product1

[1] 1990

##

$product2

[1] 3075

##

$product3

[1] 1470

We observe the same result. Compared to map, the function lapply is part of base R
and always returns a list.

Problem 4: Repeat 1 using sapply.

Use sapply to calculate total monthly sales for each product

f_sapply = function(x){
sapply(x, sum)

}

Display the total monthly sales for each product

f_sapply(product_sales)

product1 product2 product3

1990 3075 1470

As a result, we have a numeric vector.

Page 10 of 13

Data and Code Management
Exercise 3 - correction

Problem 5: Repeat 1 using vapply.

#5. Vapply

Use vapply to calculate total monthly sales for each product

f_vapply = function(x){
vapply(x, FUN = sum, FUN.VALUE = numeric(1))

}

Display the total monthly sales for each product

f_vapply(product_sales)

product1 product2 product3

1990 3075 1470

The function vapply produces the same result as sapply, but with stricter control
over outputs. Unlike sapply, which tends to simplify outputs automatically, vapply
consistently returns the output type specified in FUN.VALUE.

Problem 6: Repeat 1 using mclapply or parLapply.

#6. Mclapply and parLapply

We install a library parallel for parallel calculus

library(parallel)

One way to implement parallelism is to use mclapply (does not

supported by Windows!)

mclapply(product_sales , sum , mc.cores = 5)

Alternatively , one can use parLapply

To this end , we create 5 clusters

cl <- makeCluster (5)

f_par = function(x){

and we are able to apply our function

parLapply(cl, x, sum)

We should stop clusters

}

Display the total monthly sales for each product

f_par(product_sales)

stopCluster(cl)

The advantages of the mclapply function:

Page 11 of 13

Data and Code Management
Exercise 3 - correction

1. It provides a quick and simple parallel solution without inter-process communica-
tion.

2. It is well-suited for tasks that can be completed independently on a single machine.

However, mclapply is not supported on Windows (i.e., it is not portable) and does not
allow communication between parallel processes.

On the other hand, the function parLapply is supported on both Windows and Unix-
like systems, and it provides the user with more control over the processes (including
parallel computation across multiple computers). To use parLapply, however, one needs
to create clusters and manage the processes accordingly.

Problem 7: Compare these six approaches with microbenchmark.
Which approach is the most efficient?

To be able to treat parLapply as a function we move ”stopCluster(cl)” in the end of the
code.

To this end , we create 5 clusters

cl <- makeCluster (5)

f_par = function(x){

and we are able to apply our function

parLapply(cl, x, sum)

We should stop clusters

}

Display the total monthly sales for each product

f_par(product_sales)

7. Benchmark

library(microbenchmark)

Testing performance of the aforementioned functions

microbenchmark(f_for(product_sales), f_map(product_sales), f_

lapply(product_sales), f_sapply(product_sales), f_vapply(

product_sales), f_par(product_sales), times = 1000)

stopCluster(cl)

The table with results should look as follows:

Page 12 of 13

Data and Code Management
Exercise 3 - correction

According to the table, we can conclude that lapply and for loop implementation
work faster than other functions. The function parlapply is the slowest one in this
example, which might be a case for simple tasks, since parlapply requires time to manage
several processes and, therefore, be inefficient in simple problems.

Page 13 of 13

	R Package
	Object-Oriented Programming
	Functional Programming

