Programming Tools in Data Science
Exercise 2 - Correction

1

Web Scraping

Problem 1: CSS Diner

Answers to the CSS Diner exercise:

1

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

plate

. bento

fancy

. plate apple

. fancy pickle

apple.small/.small

. orange.small
. bento orange.small

. plate, bento

*

plate *

plate + apple

bento + pickle

plate > apple

orange:first-child

plate apple:only-child, plate pickle:only-child
apple:last-child, pickle:last-child
:nth-child(3)

bento:nth-last-child(3)
apple:first-of-type

:nth-of-type(even)
plate:nth-of-type(3n+2)

plate apple:only-child
apple:last-of-type, orange:last-of-type
bento:empty

apple:not(.small)

Page 1 of 77

Programming Tools in Data Science
Exercise 2 - Correction

27. [for]
28. platel[for]

29. [for = ”Vitaly”]

30. [for” ="Sa’]
31. [for$="ato”]
32. [for*="0bb”].

Problem 2

First follow instructions here. SelectorGadget
Modified code:

library("robotstxt")

We check that robots.txt allow to scrape from the following
link

paths_allowed (
path = "/en/real-estate/rent/city-basel",
domain = "https://www.immoscout24.ch/"

We can check robots.txt either by this function or visit the
site directly.

In this case the function get_robotstxt does not provide the
correct file.

get_robotstxt (domain = "https://www.immoscout24.ch/")

Download xml2 package to be able to use read_html function.

library ("xml2")

Extract html file

real_estate <- read_html(
"https://www.immoscout24.ch/en/real-estate/rent/city-basel"

To scrape data we need to use another two packages:

library("rvest")

For using pipe function

library ("magrittr")

Scraping the data

flats <- real_estate %>%

html_nodes (".HgListingCard_info_RKrwz") ¥%>%
html_text ()

Page 2 of 77

https://smac-group.github.io/ds/section-web-scraping.html

Programming Tools in Data Science
Exercise 2 - Correction

Printing the obtained text

flats

Clean data from irrelevante information
flats_df <- data.frame(

rooms = gsub(pattern = " room.x", "", flats) %>%
as.numeric (),
Be careful with "-": do not mix up dash and hyphen! In this
listing dash should be!
price = gsub(".*, CHF |.-.%", """ flats) %>%
gsub (pattern = ",", replacement = "") %>%
as.numeric ()
)
Print the resulted dataset
flats_df

Alternative Workflow using CSS Selectors

Instead of using the SelectorGadget tool, you can directly use CSS selectors found in your
browser’s developer tools. Here’s an alternative solution in R using rvest:

2. Alternative solution using CSS selectors

To scrape data we use rvest package

library(rvest)

We read the html file

real _estate <- read_html("https://www.immoscout24.ch/en/real-
estate/rent/city-basel")

We extract prices from the nodes "span"

prices <- real_estate %>), html_nodes("span + span") %>% html_text
O

and print the result

prices

remove the first and two last elements

prices <- prices[-c(1l,length(prices)-1,length(prices))]

prices

Now we extract data regarding the number of rooms and the space

tmp_m2_rooms <- real_estate %>} html_nodes("strong") %>% html_
text ()

and print the result

tmp_m2_rooms

m2 contains information regarding the square of an appartment

m2 <- tmp_m2_rooms[seq(2, length(m2_rooms), 2)]

m2

rooms corresponds to the number of rooms

rooms <- tmp_m2_rooms[seq(l, length(m2_rooms), 2)]

rooms

making a nice dataset

flats_df <- data.frame(

rooms = gsub(pattern = "\\s*rooms", "", rooms) %>%
as.numeric (),
meter_square = gsub("m ","" ,m2) %>%

Page 3 of 77

Programming Tools in Data Science
Exercise 2 - Correction

as.numeric (),

price = gsub("\\s*xCHF\\s*x", "", prices) %>%
gsub (pattern = "\\W", replacement = "") %>%
as.numeric ()
)
#printing the resuling dataset
flats_df

Problem 3: Web Scraping with RSelenium or chromote

Using chromote:

3. Repeat exercise 2. using "RSelenium”™ or ~chromote .
library(chromote)
b <- ChromoteSession$new ()
b$Page$navigate ("https://www.immoscout24.ch/en/real-estate/rent/
city-basel")
tmp_m2_rooms <- b$Runtime$evaluate("document.querySelector ('html
') .outerHTML")$result$value %>%
read_html () %>%
html _nodes("strong") %>%
html_text ()
prices <- b$Runtime$evaluate("document.querySelector ('html"').
outerHTML")$result$value %>%
read_html () %>%
html_nodes ("span + span") %>%
html_text ()
then as in 2.
b$close ()
prices
Note you can use b$screenshot ("browser.png") to take a
screenshot of the browser window.
Result might differ from the one obtained with rvest because
the website might have changed or display differently in
chromote.

Problem 4: Extracting World Bank Data using Regular Expres-
sions

1. Extract the dataset from the table in https://data.
worldbank.org/indicator/SP.ADO. TFRT

The package "Chromote" is used to deal with dynamically
changing sites

library (chromote)

To work with html files we should use tidyverse library (or
rvest)

In addition tidyverse has a built-in pipe operation

library(tidyverse)

Page 4 of 77

Programming Tools in Data Science
Exercise 2 - Correction

Initialization of the website, where to scrape
url <- "https://data.worldbank.org/indicator/SP.ADO.TFRT"

We simulate a Browser to extract raw_data
b <- ChromoteSession$new()

b$Page$navigate (url)
raw_data <- b$Runtime$evaluate("document.querySelector ('html').
outerHTML") $result$value %>%
read_html () %>%
html_nodes (".item") %>%
html_text ()
b$close ()
We print the collected raw_data
raw_data

2. We modify the view of the dataset to make nicer.
a. Countrycodes

We will convert names of countries into their short codes using

the countryside package

library (countrycode)

First of all we get rid of any numbers using "[[:digit:]]x*"
regular expression

country <- gsub("[[:digit:]]*", "", raw_data)

Convert country names to their codes

country_iso <- countrycode(country, origin = 'country.name',
destination = 'iso3c')

We print the resulting list of codes

country_iso

However , country_iso contains NA's. Next we check order numbers

of non-NA elements

ind <- which(!is.na(country_iso)) # remove missing iso

and print the indeces of such counrties

ind

#b. Further modifications with raw_data

n n

we replace spaces with
raw_data2 <- gsub("\\s","a",raw_data)
and print the result

raw_data?2

a

we replace any non-word charcter with "a"
raw_data2 <- gsub("\\W","a",raw_data2)

and print the result

raw_data?2

Page 5 of 77

Programming Tools in Data Science
Exercise 2 - Correction

we remove all letters and first 4 digital naumbers

data <- gsub("[[:alpha:]1]1x\\d{4}", "", raw_data2)
and print the result
data

and convert elements to number

data <- as.numeric(data)

We print the result. Some of elements are NA
data

c. We make a nice dataset

Using tibble library we create a dataset of a type tibble
library(tibble)

fert_rate <- tibble(ISO = country_iso[ind], value = datal[ind])
and print the resulting datset

fert_rate

Page 6 of 7?7

