Data and Code Management
Additional Exercises 1 - Correction

1 R Markdown

1.1 Basic manipulations

2) To create a header of type 2 one can just use ## before text.

3) To perform a linear regression of ”Sepal Length” as the response variable and
"Sepal Width” as the explanatory variable using the iris dataset, we use the 1m()
function. Below is the code for this task.

data(iris)
model <- 1m(Sepal.Length ~ Sepal.Width, data = iris)

saveRDS(model, file = "linear_model.rds")

The function ”"saveRDS” saves a model as a .rds object and it does not preserve
model’s name. "saveRDS” works in pair with "readRDS”.

4) To write text in monochrome style one can use 2 symbols ”*” before and after the
text.

5) The summary output will display the regression coefficients, standard errors, and
statistical significance.

readRDS("linear_model.rds")

##

Call:

1lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
#H

Coefficients:

(Intercept) Sepal.Width

6.5262 -0.2234

summary (model)

##

Call:

1lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
##

Residuals:

Min 1Q Median 3Q Max

-1.5561 -0.6333 -0.1120 0.5579 2.2226

Page 1 of

Data and Code Management
Additional Exercises 1 - Correction

#i#
#Hit
#Hit
##
##
##
#Hit
#it
##
#i#
#i#

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.5262 0.4789 13.63 <2e-16 **x
Sepal.Width -0.2234 0.1551 -1.44 0.152
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 '

Residual standard error: 0.8251 on 148 degrees of freedom
Multiple R-squared: 0.01382,Adjusted R-squared: 0.007159

F-statistic:

2.074 on 1 and 148 DF, p-value: 0.1519

6) For better visualization, we can create a QQ plot of residuals:

qqnorm(residuals(model), pch = 16)
gqline(residuals(model))

Normal Q-Q Plot

1

N pu—
H pu—
[72]
@
=
c
I
>
(04
<@
£
g © 7
»
- |
I
[]

Theoretical Quantiles

Page 2 of

Data and Code Management
Additional Exercises 1 - Correction

7) To display the first few rows of the iris dataset using kable, we proceed as follows:

Install and load knitr
library(knitr)

Print the head of the dataset using kable
kable(head(iris), row.names = FALSE)

Sepal.Length | Sepal.Width | Petal.Length | Petal. Width | Species
5.1 3.5 14 0.2 | setosa
4.9 3.0 1.4 0.2 | setosa
4.7 3.2 1.3 0.2 | setosa
4.6 3.1 1.5 0.2 | setosa
5.0 3.6 1.4 0.2 | setosa
5.4 3.9 1.7 0.4 | setosa

8) To remove the period from the column names, we can rename the columns:

Rename columns by removing periods
colnames(iris) <- gsub("\\.", " ", colnames(iris))
kable(head(iris), row.names = FALSE)

Sepal Length | Sepal Width | Petal Length | Petal Width | Species
5.1 3.5 1.4 0.2 | setosa
4.9 3.0 14 0.2 | setosa
4.7 3.2 1.3 0.2 | setosa
4.6 3.1 1.5 0.2 | setosa
5.0 3.6 1.4 0.2 | setosa
5.4 3.9 1.7 0.4 | setosa

1.2 More advanced manipulations

3) To cite the paper arXiv:math/0303109, we need to include a BibTeX entry in the
RMarkdown file, to make a BibTex file one can use Google Scholar. Add the reference in
the bibliography section and use @perelman2003ricci for in-text citation.

2 GitHub

2.1 Solution: Collaborative Workflow in GitHub
3)

1. Person A and Person B should collaborate using the following Git commands:
For Person B: Make changes, commit, and push
git pull

git add .
git commit -m "Changes by Person B"

Page 3 of

https://arxiv.org/abs/math/0303109

Data and Code Management
Additional Exercises 1 - Correction

git push

For Person A: Pull the changes made by Person B
git pull

If both modify different sections without conflicts, they can simply merge without
issues. However, in the event of conflicts (both editing the same section), they need
to resolve the conflict manually:

Pull changes after a conflict

git pull

Resolve the conflicts manually in the editor

git add .

git commit -m "Resolved conflict"

git push

3 Lecture 4: Data Structures

3.1 1. Matrix Dimensions and Products

The matrices A and B have dimensions 10 x 2. Their transpose products are calculated

as follows:

Create matrices A and B
set.seed(1)

A <- matrix(rnorm(20), ncol = 2)
B <- matrix(rnorm(20), ncol = 2)
Matrixz multiplication

A_t_B <- t(A) %*% B

A_B_t <- A %% t(B)

Display results

A_t_B

(,1] [,2]

[1,] -4.982433 -1.228744

[2,] 5.223403 1.668847
A_B_t

#i [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.4783293 -0.6453648 0.53936312
[2,] 0.6984361 0.1035630 0.16482452 -0.3863067 -0.4230105 -0.17209049
[3,] -1.6119907 -0.5897196 -0.30314597
[4,] -1.5430405 1.4753710 -0.73962419 -3.0544126 4.0385698 0.82954731

Page 4 of

1.1648955 -2.4701049 -0.59221890

1.6957851

0.3375411

0.30471424

Data and Code Management
Additional Exercises 1 - Correction

[5,] 1.8312308 0.1420909 0.46067352 -0.7160338 -1.3448595 -0.48533507
[6,] -0.8150423 -0.6370995 -0.07859770 1.6346178 -0.4466712 0.06469906
[7,] 0.4259389 0.3829001 0.03006863 -0.9687967 0.3244160 -0.02063991
[8,] 1.9608747 0.4804558 0.42095167 -1.5195706 -0.8420860 -0.43312813
[9,] 1.6449065 0.3659280 0.36129727 -1.1896174 -0.7739864 -0.37312021
[10,]1 0.5262766 -0.2999011 0.20746740 0.5755700 —-1.0071251 -0.22932475
#it [,7] [,8] [,9] [,10]

[1,] -0.4984814 0.8316896 1.9625366 0.8919336

[2,] -0.1823221 -0.2932168 0.3410284 0.3742711

[3,] 0.3751361 1.2658507 -0.2838245 -0.8233597

[4,]1 0.6246963 -2.2149017 -3.1990097 -1.0234711

[5,] -0.4948848 -0.5513478 1.0798984 0.9962350

[6,] 0.1455422 1.2093710 0.3428789 -0.3772001

[7,] -0.0695556 -0.7159271 -0.2508739 0.1913608

[8,] -0.4871728 -1.1418750 0.6852138 1.0288895

[9,] -0.4135034 -0.8955412 0.6280543 0.8673791

[10,] -0.1865912 0.4139244 0.7993280 0.3256166

3.2 2. Combine Matrices

Combining A and B row-wise to create C"

Combine matrices row-wise
C <- rbind(A, B)

3.3 3. Covariance Matrix

The unbiased estimator of the covariance matrix is given by ﬁDTD. Here is how to
compute it and compare with cov(C):

Center matrixz C column-wise
D <- scale(C, center = TRUE, scale = FALSE)

Compute covariance estimator
cov_estimator <- (t(D) %*% D) / (nrow(D) - 1)

Compare with built-in cov(C)
cov_estimator

#it [,1] [,2]
[1,] 0.7397870 -0.1096401
[2,] -0.1096401 0.8558324
cov(C)

#it [,1] [,2]
[1,] 0.7397870 -0.1096401
[2,] -0.1096401 0.8558324

Page 5 of

Data and Code Management
Additional Exercises 1 - Correction

4 Control Structures

4.1 Solution: Bootstrap Distribution

Using the ToothGrowth dataset, we can compute the bootstrap distribution for each
vector and plot the histograms.

Load dataset
data("ToothGrowth")

Create vectors for OJ and VC factors
0J_length <- ToothGrowth$len[ToothGrowth$supp == "0J"]
VC_length <- ToothGrowth$len[ToothGrowth$supp == "VC"]

Compute means
mean (0J_length)

[1] 20.66333
mean (VC_length)
[1] 16.96333

Bootstrap function using replicate function
bootstrap <- function(x, B = 10000) {

replicate(B, mean(sample(x, replace = TRUE)))
}

Alternatively, one can create the function using for loop:
bootstrap_for <- function(x, B = 10000) {
y <- rep(NA, B)
for (i in 1:B){
y[i] <- mean(sample(x, replace = TRUE))

}

return(y)

}

Generate bootstrap distributions
set.seed(123)

bootstrap_0J <- bootstrap(0J_length)
bootstrap_VC <- bootstrap(VC_length)

Plot histograms using ggplot2

library(ggplot2)

df <- data.frame(Value = c(bootstrap_0J, bootstrap_VC),
Group = rep(c("0J", "VC"), each = 10000))

ggplot(df, aes(x = Value, fill = Group)) +
geom_histogram(alpha = 0.6, position = "identity", bins = 30) +
theme_minimal ()

Page 6 of

Data and Code Management
Additional Exercises 1 - Correction

1500

1000

count

500

10 15 20
Value

5 Functions

5.1 Solution 1: Function Return Value

The following code returns 4:

x <- 2
f1 <- function(x) {
function() {
x + 3
}
1

f1(1)(O # returns 4 because z inside f1 is set to 1

[1] 4

Page 7 of

25

Data and Code Management
Additional Exercises 1 - Correction

5.2 Solution 2: Simplifying Expressions

The following code expressions can be simplified:

1 +2 % 3
[1] 7
3x (2 + 1)

[1] 9

5.3 Solution 3: Improving Readability

This function call can be made more readable:

mean(x = c(seq(10), rep(NA, 3)), na.rm = TRUE)

[1] 5.5

5.4 Solution 4: Error Handling in Function

The following code throws an error because the first argument of £2() is evaluated first,
leading to an error in the second call:

f2 <- function(a, b) {
ax*x 3

}
£2(3, stop("This is an error!"))
[1] 9

f2(stop("This is an error!"), 3)

Error in f2(stop("This is an error!"), 3): This is an error!

Solution 5: Infix Function

An example of an infix function in R could be for string concatenation:

“%concat%” <- function(a, b) {
paste(a, b, sep = "")

}

"Hello" Y%concat% " World"

[1] "Hello World"

Page 8 of

	R Markdown
	Basic manipulations
	More advanced manipulations

	GitHub
	Solution: Collaborative Workflow in GitHub

	Lecture 4: Data Structures
	1. Matrix Dimensions and Products
	2. Combine Matrices
	3. Covariance Matrix

	Control Structures
	Solution: Bootstrap Distribution

	Functions
	Solution 1: Function Return Value
	Solution 2: Simplifying Expressions
	Solution 3: Improving Readability
	Solution 4: Error Handling in Function

