
Data and Code Management
Additional Exercises 1 - Correction

1 R Markdown

1.1 Basic manipulations

2) To create a header of type 2 one can just use ## before text.

## Header Text

3) To perform a linear regression of ”Sepal Length” as the response variable and
”Sepal Width” as the explanatory variable using the iris dataset, we use the lm()

function. Below is the code for this task.

# Load dataset

data(iris)

# Fit linear model

model <- lm(Sepal.Length ~ Sepal.Width, data = iris)

# Saving the fitted model

saveRDS(model, file = "linear_model.rds")

The function ”saveRDS” saves a model as a .rds object and it does not preserve
model’s name. ”saveRDS” works in pair with ”readRDS”.

4) To write text in monochrome style one can use 2 symbols ”‘” before and after the
text.

5) The summary output will display the regression coefficients, standard errors, and
statistical significance.

# To load a model one can use the following command:

readRDS("linear_model.rds")

##

## Call:

## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

##

## Coefficients:

## (Intercept) Sepal.Width

## 6.5262 -0.2234

# Print summary

summary(model)

##

## Call:

## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.5561 -0.6333 -0.1120 0.5579 2.2226

Page 1 of 8



Data and Code Management
Additional Exercises 1 - Correction

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.5262 0.4789 13.63 <2e-16 ***

## Sepal.Width -0.2234 0.1551 -1.44 0.152

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.8251 on 148 degrees of freedom

## Multiple R-squared: 0.01382,Adjusted R-squared: 0.007159

## F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

6) For better visualization, we can create a QQ plot of residuals:

# QQ plot with filled dots

qqnorm(residuals(model), pch = 16)

qqline(residuals(model))

−2 −1 0 1 2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Page 2 of 8



Data and Code Management
Additional Exercises 1 - Correction

7) To display the first few rows of the iris dataset using kable, we proceed as follows:

# Install and load knitr

library(knitr)

# Print the head of the dataset using kable

kable(head(iris), row.names = FALSE)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

8) To remove the period from the column names, we can rename the columns:

# Rename columns by removing periods

colnames(iris) <- gsub("\\.", " ", colnames(iris))

kable(head(iris), row.names = FALSE)

Sepal Length Sepal Width Petal Length Petal Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

1.2 More advanced manipulations

3) To cite the paper arXiv:math/0303109, we need to include a BibTeX entry in the
RMarkdown file, to make a BibTex file one can use Google Scholar. Add the reference in
the bibliography section and use @perelman2003ricci for in-text citation.

2 GitHub

2.1 Solution: Collaborative Workflow in GitHub

3)

1. Person A and Person B should collaborate using the following Git commands:

# For Person B: Make changes, commit, and push

git pull

git add .

git commit -m "Changes by Person B"

Page 3 of 8

https://arxiv.org/abs/math/0303109


Data and Code Management
Additional Exercises 1 - Correction

git push

# For Person A: Pull the changes made by Person B

git pull

2. If both modify different sections without conflicts, they can simply merge without
issues. However, in the event of conflicts (both editing the same section), they need
to resolve the conflict manually:

# Pull changes after a conflict

git pull

# Resolve the conflicts manually in the editor

git add .

git commit -m "Resolved conflict"

git push

3 Lecture 4: Data Structures

3.1 1. Matrix Dimensions and Products

The matrices A and B have dimensions 10× 2. Their transpose products are calculated
as follows:

# Create matrices A and B

set.seed(1)

A <- matrix(rnorm(20), ncol = 2)

B <- matrix(rnorm(20), ncol = 2)

# Matrix multiplication

A_t_B <- t(A) %*% B

A_B_t <- A %*% t(B)

# Display results

A_t_B

## [,1] [,2]

## [1,] -4.982433 -1.228744

## [2,] 5.223403 1.668847

A_B_t

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1.4783293 -0.6453648 0.53936312 1.1648955 -2.4701049 -0.59221890

## [2,] 0.6984361 0.1035630 0.16482452 -0.3863067 -0.4230105 -0.17209049

## [3,] -1.6119907 -0.5897196 -0.30314597 1.6957851 0.3375411 0.30471424

## [4,] -1.5430405 1.4753710 -0.73962419 -3.0544126 4.0385698 0.82954731

Page 4 of 8



Data and Code Management
Additional Exercises 1 - Correction

## [5,] 1.8312308 0.1420909 0.46067352 -0.7160338 -1.3448595 -0.48533507

## [6,] -0.8150423 -0.6370995 -0.07859770 1.6346178 -0.4466712 0.06469906

## [7,] 0.4259389 0.3829001 0.03006863 -0.9687967 0.3244160 -0.02063991

## [8,] 1.9608747 0.4804558 0.42095167 -1.5195706 -0.8420860 -0.43312813

## [9,] 1.6449065 0.3659280 0.36129727 -1.1896174 -0.7739864 -0.37312021

## [10,] 0.5262766 -0.2999011 0.20746740 0.5755700 -1.0071251 -0.22932475

## [,7] [,8] [,9] [,10]

## [1,] -0.4984814 0.8316896 1.9625366 0.8919336

## [2,] -0.1823221 -0.2932168 0.3410284 0.3742711

## [3,] 0.3751361 1.2658507 -0.2838245 -0.8233597

## [4,] 0.6246963 -2.2149017 -3.1990097 -1.0234711

## [5,] -0.4948848 -0.5513478 1.0798984 0.9962350

## [6,] 0.1455422 1.2093710 0.3428789 -0.3772001

## [7,] -0.0695556 -0.7159271 -0.2508739 0.1913608

## [8,] -0.4871728 -1.1418750 0.6852138 1.0288895

## [9,] -0.4135034 -0.8955412 0.6280543 0.8673791

## [10,] -0.1865912 0.4139244 0.7993280 0.3256166

3.2 2. Combine Matrices

Combining A and B row-wise to create C:

# Combine matrices row-wise

C <- rbind(A, B)

3.3 3. Covariance Matrix

The unbiased estimator of the covariance matrix is given by 1
n−1

DTD. Here is how to
compute it and compare with cov(C):

# Center matrix C column-wise

D <- scale(C, center = TRUE, scale = FALSE)

# Compute covariance estimator

cov_estimator <- (t(D) %*% D) / (nrow(D) - 1)

# Compare with built-in cov(C)

cov_estimator

## [,1] [,2]

## [1,] 0.7397870 -0.1096401

## [2,] -0.1096401 0.8558324

cov(C)

## [,1] [,2]

## [1,] 0.7397870 -0.1096401

## [2,] -0.1096401 0.8558324

Page 5 of 8



Data and Code Management
Additional Exercises 1 - Correction

4 Control Structures

4.1 Solution: Bootstrap Distribution

Using the ToothGrowth dataset, we can compute the bootstrap distribution for each
vector and plot the histograms.

# Load dataset

data("ToothGrowth")

# Create vectors for OJ and VC factors

OJ_length <- ToothGrowth$len[ToothGrowth$supp == "OJ"]

VC_length <- ToothGrowth$len[ToothGrowth$supp == "VC"]

# Compute means

mean(OJ_length)

## [1] 20.66333

mean(VC_length)

## [1] 16.96333

# Bootstrap function using replicate function

bootstrap <- function(x, B = 10000) {
replicate(B, mean(sample(x, replace = TRUE)))

}

# Alternatively, one can create the function using for loop:

bootstrap_for <- function(x, B = 10000) {
y <- rep(NA, B)

for (i in 1:B){
y[i] <- mean(sample(x, replace = TRUE))

}
return(y)

}

# Generate bootstrap distributions

set.seed(123)

bootstrap_OJ <- bootstrap(OJ_length)

bootstrap_VC <- bootstrap(VC_length)

# Plot histograms using ggplot2

library(ggplot2)

df <- data.frame(Value = c(bootstrap_OJ, bootstrap_VC),

Group = rep(c("OJ", "VC"), each = 10000))

ggplot(df, aes(x = Value, fill = Group)) +

geom_histogram(alpha = 0.6, position = "identity", bins = 30) +

theme_minimal()

Page 6 of 8



Data and Code Management
Additional Exercises 1 - Correction

0

500

1000

1500

10 15 20 25
Value

co
un

t Group

OJ

VC

5 Functions

5.1 Solution 1: Function Return Value

The following code returns 4:

x <- 2

f1 <- function(x) {
function() {

x + 3

}
}
f1(1)() # returns 4 because x inside f1 is set to 1

## [1] 4

Page 7 of 8



Data and Code Management
Additional Exercises 1 - Correction

5.2 Solution 2: Simplifying Expressions

The following code expressions can be simplified:

# Simplified

1 + 2 * 3

## [1] 7

3 * (2 + 1)

## [1] 9

5.3 Solution 3: Improving Readability

This function call can be made more readable:

mean(x = c(seq(10), rep(NA, 3)), na.rm = TRUE)

## [1] 5.5

5.4 Solution 4: Error Handling in Function

The following code throws an error because the first argument of f2() is evaluated first,
leading to an error in the second call:

f2 <- function(a, b) {
a * 3

}
f2(3, stop("This is an error!")) # No error

## [1] 9

f2(stop("This is an error!"), 3) # Error because stop is called

## Error in f2(stop("This is an error!"), 3): This is an error!

Solution 5: Infix Function

An example of an infix function in R could be for string concatenation:

`%concat%` <- function(a, b) {
paste(a, b, sep = "")

}

# Usage

"Hello" %concat% " World" # returns "Hello World"

## [1] "Hello World"

Page 8 of 8


	R Markdown
	Basic manipulations
	More advanced manipulations

	GitHub
	Solution: Collaborative Workflow in GitHub

	Lecture 4: Data Structures
	1. Matrix Dimensions and Products
	2. Combine Matrices
	3. Covariance Matrix

	Control Structures
	Solution: Bootstrap Distribution

	Functions
	Solution 1: Function Return Value
	Solution 2: Simplifying Expressions
	Solution 3: Improving Readability
	Solution 4: Error Handling in Function


